

04-A1 – Schulungsunterlagen für die Workshops

Informationen zu ausgewählten 3D-Drucktechnologien

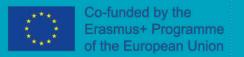
Erasmus+ für den Einstieg in den 3D-Druck an Berufsbildungszentren

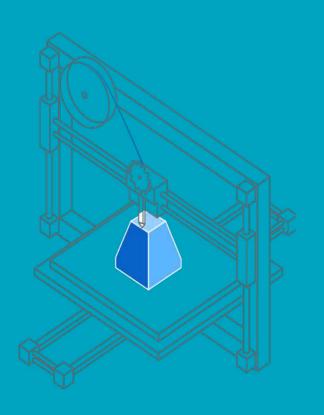
Project Agreement Number: 2017-1-DE02-KA202-004159

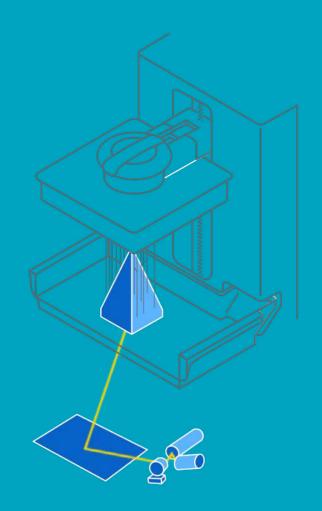
This work is licensed under a

Creative Commons Attribution 4.0 International License

"Die Unterstützung der Europäischen Kommission für die Erstellung dieser Veröffentlichung stellt keine Billigung der Inhalte dar, die nur die Ansichten der Autoren widerspiegelt, und die Kommission kann nicht für die Verwendung der darin enthaltenen Informationen verantwortlich gemacht werden."

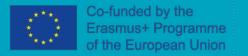





Einleitung

Top 3 Technologien:

- Fused Deposition Modeling (FDM)
- Selective Laser Sintering (SLS)
- Stereolithography (SLA)



FDM 3D-Drucker extrudieren und lagern geschmolzene Thermoplaste auf einer Bauplattform, um Bauteile Schicht für Schicht herzustellen.

SLA 3D-Drucker verwenden einen Präzisionslaser, um Harz zu härten und Teile mit hoher Genauigkeit herzustellen.

Fused Deposition Modelling (FDM)

FDM ist die am weitesten verbreitete 3D-Drucktechnologie auf Verbraucherebene. Es funktioniert durch Extrudieren eines thermoplastischen Polymers, das durch eine beheizte Düse geleitet wird, die Schicht für Schicht auf einer Plattform abgeschieden wird, wodurch ein 3D-Druckobjekt entsteht.

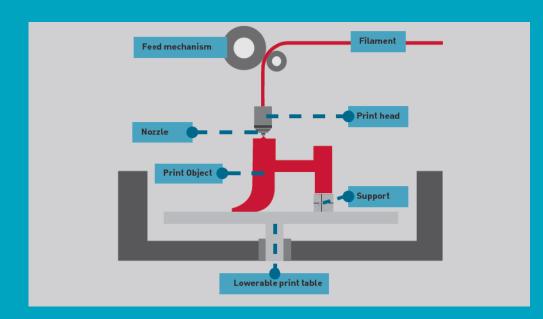


Abbildung 1: FDM-Druckprozess. [1]

Der Drucker bewegt die Düse kontinuierlich umher und legt das geschmolzene Material an einer genauen Stelle ab, wo es sofort abkühlt und erstarrt. Sobald eine Schicht fertig ist, hebt sie die Düse zur nächsten an, bis das Teil fertig ist.

Das 3D-Modell muss in Schichten "geschnitten" werden, bevor es gedruckt werden kann.

Welche Materialen können mit FDM benutzt werden?

- ABS (Acrylonitrile Butadiene Styrene),
- PLA (Polymilchsäure) und
- **PETG** (Polyethylenterephthalat glykolmodifiziert)
- TPU (Thermoplastisches Polyurethan)
- PA oder Nylon (Polyamid)
- **PEEK** (Polyetheretheretherketon)
- **PEI** (Polyetherimid)

Abbildung 2: FDM-Filamente. [2]

Die Technologie hinter diesen Filamenten wird oft als "Fused Filament Fabrication" (FFF) bezeichnet. Die am häufigsten verwendeten Materialien sind ABS und PLA. Auch neue spezielle Filamenttypen wurden entwickelt. Glühen im Dunkeln, metallische, Holz- oder flexible Filamente sind nur einige Beispiele.

Fused Deposition Modelling (FDM)

STÄRKEN	SCHWÄCHEN					
FDM-Druckmaschinen gehören zu den günstigsten.	Die 3D-Drucke erreichen nicht die gleiche Genauigkeit und Qualität wie andere Artikel, die stattdessen durch den Einsatz der Stereolithographie hergestellt werden.					
FDM gilt als eine sehr saubere Technologie, die in der Regel einfach zu bedienen und bürofreundlich ist.	Im Gegensatz zu SLA weist FDM auch eine erhöhte Komplexität auf.					
FDM kann auch komplexe Geometrien und Hohlräume herstellen.	FDM ist im Allgemeinen langsamer als Stereolithographie und selektives Lasersintern.					

Selective Laser Sintering (SLS)

SLS ist eine Technik, die Laser als Energiequelle verwendet, um feste 3D-Objekte zu erzeugen. Eine Kammer ist mit pulverförmigem Material gefüllt, und jede Schicht, die der Laser verschmilzt, erzeugt eine durch das 3D-Modell definierte Form.

Im Gegensatz zu SLA und FDM ist beim Selektiven Lasersintern kein Einsatz von Stützstrukturen erforderlich, da das Pulver selbst als Träger dient. Sobald der Druck abgeschlossen ist, wird das zusätzliche Pulver entfernt.

Der Hauptunterschied zu SLA besteht darin, dass SLS pulverförmiges Material im Baubereich anstelle von Flüssigharz verwendet.

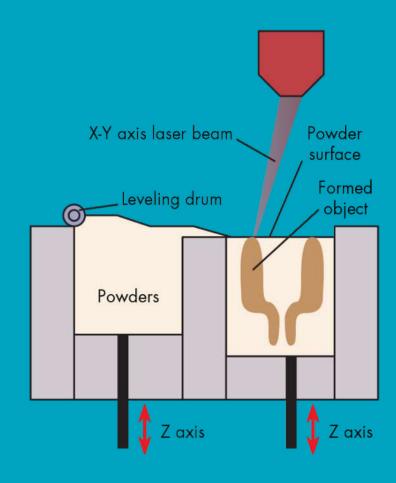
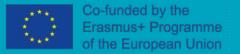



Abbildung 3: SLS-Technologie. [3]

SLS Prozess

- 1. Der Innenraum des Druckers wird bis knapp unter den Schmelzpunkt des verwendeten Pulvers erwärmt.
- 2. Der Drucker verteilt dann eine unglaublich feine Schicht dieses Pulvers.
- 3. Ein Laserstrahl erwärmt die zu sinternden Bereiche knapp über dem Schmelzpunkt. Die vom Laser berührten Teile werden nun miteinander verschmolzen, während der Rest weiterhin loses Pulver bleibt.
- 4. Die Z-Achse senkt sich ab und wiederholt sich von (2), bis das Teil fertig ist.

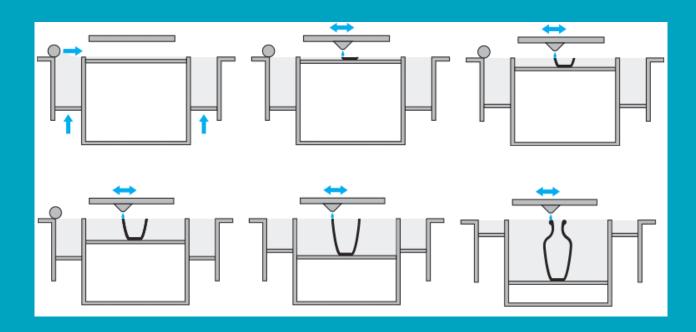
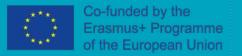



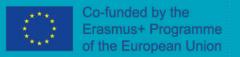
Abbildung 4: SLS-Prozess [4]

Welche Materialien können mit SLS verwendet werden?

- Kunststoff: Polyamide (PA), Polystyrole (PS),
 Thermoplastische Elastometer (TPE), etc.
- Metall: Aluminium, Silber und Stahl
- Keramik
- Glas

Metallmaterialien werden in SLS seit der Entwicklung des Selective Laser Melting (SLM) nicht mehr häufig verwendet. Das am häufigsten verwendete Material ist Nylon (Polyamide).

Abbildung 5: Schuhsilhouette, die mit SLS erstellt wurde. [5]



Selective Laser Sintering (SLS)

STÄRKEN	SCHWÄCHEN
Keine Verwendung von Stützkonstruktionen.	SLS-Drucke weisen eine gewisse Oberflächenporosität auf, weshalb eine Nachbearbeitung erforderlich ist.
Reduzierte Kosten für die Materialien.	
Kann eine hohe Komplexität der Geometrie und hohe Genauigkeit bewältigen.	
Schnellster additiver Herstellungsprozess für den Druck von funktionalen, langlebigen Prototypen und Endverbraucherteile.	

Stereolithography (SLA)

Die Stereolithographie (SLA) ist ein Photopolymerisationsverfahren, das einzelne Schichten eines Modells mit Flüssigpolymer (Harz) aufbaut.

Es gibt zwei Arten von SLA-Druckern:

SLA-Drucker von oben nach unten: Der Laser wird über dem Harzbehälter platziert.

Bottom-up-SLA-Drucker: Der Laser wird unter dem Tank platziert.

SLA produziert vollständig dichte isotrope Teile, die wasserund luftdicht sind, was ideal für technische und Fertigungsanwendungen ist, bei denen es auf die Materialeigenschaften ankommt.

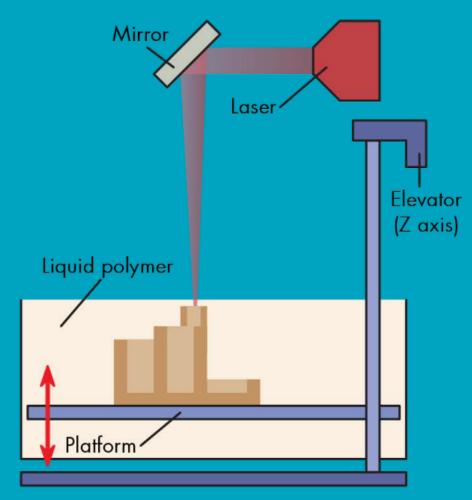
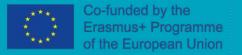



Abbildung 6: SLS-Technologie. [3]

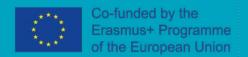
SLA Prozess

- 1. Die Bauplattform wird eine Schicht von der Oberfläche des Harzes entfernt platziert.
- 2. Der UV-Laser erzeugt eine Schicht durch selektives Aushärten der durch das 3D-Modell definierten Form.
- 3. Wenn eine Schicht fertig ist, bewegt sich die Plattform und die nächste Schicht wird gebildet.
- 4. Wenn der Druck abgeschlossen ist, muss das Teil in Isopropylalkohol (IPA) gespült werden, und einige Materialien erfordern einen Nachhärtungsprozess.




Abbildung 7: Der Aushärtungsprozess des SLA 3D-Druckers [6].

Welche Materialien können mit SLA verwendet werden?


Es gibt eine Vielzahl von SLA-Materialien, die als Flüssigharze erhältlich sind:

- Standardharz
- Klares Harz: transparent
- Gießbares Harz: Wird für Formen verwendet
- Graues Harz (Prime Gray): sehr glattes Finish
- Dentalharz: für Implantate
- Hochtemperatur-Harz: beständig bis 238 °C

Abbildung 8: SLA 3D-Drucker bieten verschiedene Materialien für technische und fertigungstechnische Anwendungen. [2]

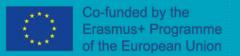


Stereolithography (SLA)

STÄRKEN	SCHWÄCHEN				
Hohe Auflösung der 3D-Drucke	Photopolymer-Materialien können sehr teuer sein.				
Ermöglicht das Drucken von Objekten mit sehr komplexen Geometrien.	Flüssigharze sind in der Regel reizend und giftig.				
Angemessene Zeitspanne.	Drucke müssen in der Regel gereinigt werden, im Allgemeinen ist eine Nachbearbeitung erforderlich.				
	Erfordert Stützstrukturen.				

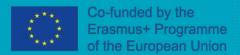
Der Workflow für den SLA-3D-Druck besteht aus drei Schritten:

- 1. Entwerfen: Für die Konstruktion eines Modells wird CAD-Software oder 3D-Scandaten benötigt, die in ein druckfähiges 3D-Dateiformat (STL oder OBJ) exportiert werden können. 3D-Drucker benötigen dann eine Software, um Druckeinstellungen festzulegen und das digitale Modell in Ebenen für den Druck aufzuteilen.
- 2. 3D-Drucken: Je nach Größe des Modells, der verwendeten Technologie und den festgelegten Qualitätseinstellungen kann es einige Minuten bis zu Tagen dauern.
- 3. Nachbearbeitung: Abhängig von der verwendeten Technologie kann es zu Nachbearbeitungen kommen, wie z.B. dem Entfernen von Tragkonstruktionen oder dem Lackieren der Teile.


ERASMUS+ 3D PRINTING VET CENTRES

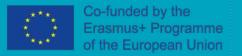
Typische Materialien verschiedener 3D-Technologien

Technology	AM process	Typical materials	Advantages	Disadvantages	
Stereolithography	Vat polymerization	Liquid photopolymer, composites	Complex geometries; detailed parts; smooth finish	Post-curing required; requires support structures	
Digital light processing	Vat polymerization	Liquid photopolymer	Allows concurrent production; complex shapes and sizes; high precision	Limited product thickness; limited range of materials	
Multi-jet modeling (MJM)	Material jetting	Photopolymers, wax	Good accuracy and surface finish; may use multiple materials (also with color); hands-free removal of support material	Range of wax-like materials is limited; relatively slow build process	
Fused deposition modeling	Material extrusion	Thermoplastics	Strong parts; complex geometries	Poorer surface finish and slower build times than SLA	
Electron beam melting	Powder bed fusion	Titanium powder, cobalt chrome	Speed; less distortion of parts; less material wastage	Needs finishing; difficult to clean the machine; caution required when dealing with X-rays	
Selective laser sintering	Powder bed fusion	Paper, plastic, metal, glass, ceramic, composites	Requires no support structures; high heat and chemical resistant; high speed	Accuracy limited to powder particle size; rough surface finish	
Selective heat sintering	Powder bed fusion	Thermoplastic powder	Lower cost than SLS; complex geometries; no support structures required; quick turnaround	New technology with limited track record	
Direct metal laser sintering	Powder bed fusion	Stainless steel, cobalt chrome, nickel alloy	Dense components; intricate geometries	Needs finishing; not suitable for large parts	
Powder bed and inkjet head printing	Binder jetting	Ceramic powders, metal laminates, acrylic, sand, composites	Full-color models; inexpensive; fast to build	Limited accuracy; poor surface finish	
Plaster-based 3D printing	Binder jetting	Bonded plaster, plaster composites	Lower price; enables color printing; high speed; excess powder can be reused	Limited choice of materials; fragile parts	
Laminated object manufacturing	Sheet lamination	Paper, plastic, metal laminates, ceramics, composites	Relatively less expensive; no toxic materials; quick to make big parts	Less accurate; non- homogenous parts	

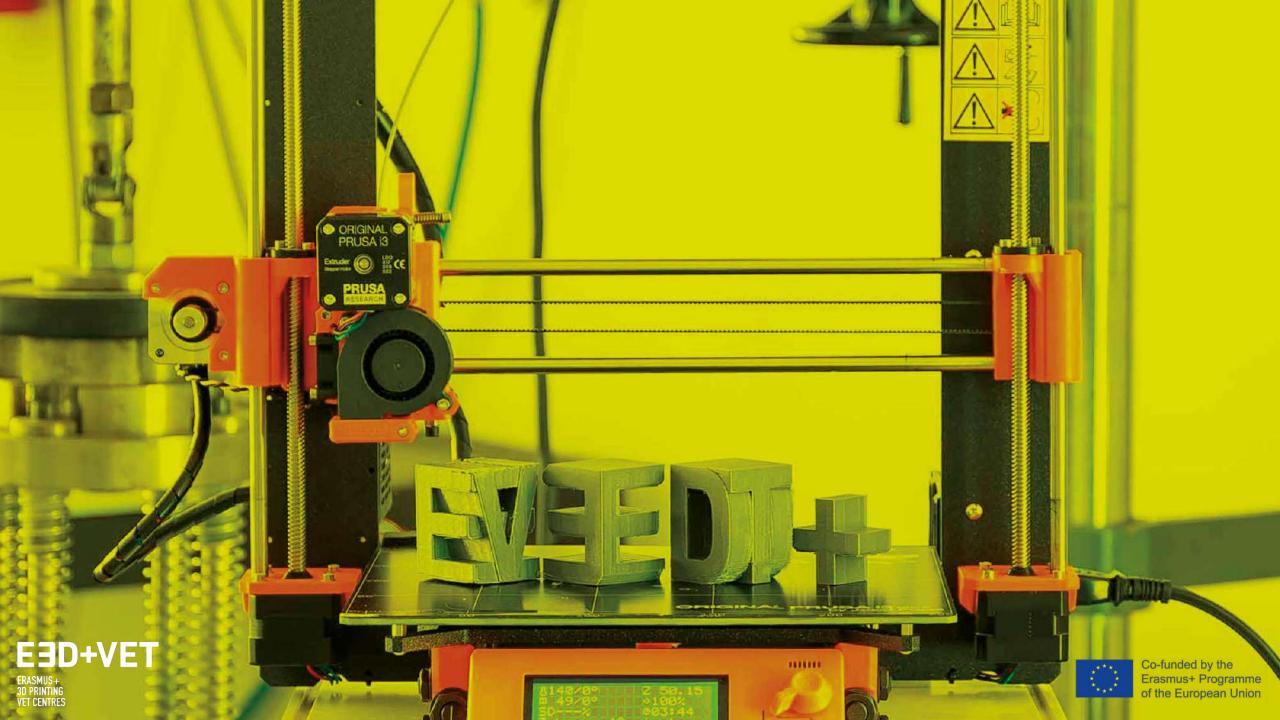


Technologien und Materialmatrix

Technology	Polymers	Metals	Ceramics	Composites
Stereolithography	•			•
Digital light processing	•			
Multi-jet modeling (MJM)	•			•
Fused deposition modeling	•			
Electron beam melting		•		
Selective laser sintering	•	•	•	•
Selective heat sintering	•			
Direct metal laser sintering		•		
Powder bed and inkjet head printing ¹³	•	•	•	•
Plaster-based 3D printing			•	•
Laminated object manufacturing ¹⁴	•	•	•	•
Ultrasonic consolidation		•		
Laser metal deposition		•		•



3DP Technologievergleiche


					,							
TECHNOLOGIES	Process	Materials used	Complexity	Speed	Max Part Size (cm)	Accuracy	Surface Finish	Strengths	Weaknesses	Pricing	Application Area	Application Examples
Fused Deposition Modeling (FDM)	Layers of melted plastic	ABS Filaments, Polycarbonate, Resin, Nylon	••••	Fair	30x30x50	Fair	Fair	Durable; ideal for conceptual models	Low resolution	€€	Aerospace, automotive, industrial, medical	Wind turbines, aircraft components
Selective Laser Sintering (SLS)	Plastic powder melted by laser	Paper, plastic, metal, glass, ceramic, composites	•••	Fast	34x34x60	Good	Fair	Resistant, durable, flexible	Needs post- processing	€€	Automotive, consumer products, aerospace	Small production batches and prototypes
Stereolithography (SLA)	Polymerization scanned by UV laser	Liquid photopolymer, composites	•••	Fast	30x30x50	Very good	Very good	High res; complex geometries	Only photopolymer materials	€€€	Aerospace, automotive, consumer goods	Medical models of anatomic human parts
Photopolymer Jetting (POLYJET)	Inkjet method with liquid photopolymers	Metals, plastic, wax	•••	Fast	39x31x19	Very good	Good	More materials at the same time	Only photopolymer materials; not durable	€€€	Medical devices, multimaterial prototypes	Medical stethoscopes
Selective Laser Melting (SLM)	Metal powder melted by laser	Metals: copper, aluminium, tungsten etc.	••	Fair	28x28x36	Fair	Fair	Manufactures high density parts	Price; needs post- processing	€€	Dental products, mechanical components	Lightweight components for aircraft
Electron Beam Melting (EBM)	Melted powder selected by electron beam	Metals: cobalt, chrome, nickel	•••	Fast	20x20x20	Fair	Poor	Less thermal stress	Limited set of metals	€€€	Dental, medical implants, automotive	Bone tissue medical models
Electron Binder Jetting (BJ)	Powder distributed by jetting machine	Ceramic, metals, plastic, sand, composite	•	Fast	40x20x10	Fair	Fair	No support structure; multicolour prints	Fragile with limited mechanical properties	€	Architecture, mechanical structures	Pots and general home furniture
Continuous Fibre Fabrication (CFF)	Double nozzle laying/melting method	Plastic, carbon composites, nylon	••••	Fair	32x43x16	Fair	Fair	Robust parts, no post- process needed	Limited fibre placement	€€€	Aerospace	Lightweight components
Material Jetting (MJ)	Inkjet method with wax materials	Wax	••	Slow	30x18x20	Very good	Good	High resolution	Limited wax- like materials; requires support structure	€€	Prototypes for form, fit testing; Casting patterns	Lost Wax Casting in Jewellery and Medical fields

Quellen

- [1] I. Materialise: The most important 3D Printing Technologies & Materials You Need to Know. 2017. Quelle: https://i.materialise.com/blog/3d-printing-technologies-and-materials/
- [2] Formlabs White Paper FDM vs. SLA. 2019. Quelle: https://3d.formlabs.com/rs/060-UIG-504/images/FDM%20vs%20SLA.pdf
- [3] What's the Difference Between Stereolithography and Selective Laser Sintering?. 2015. Quelle: http://www.machinedesign.com/3d-printing/what-s-difference-between-stereolithography-and-selective-laser-sintering
- [4] How Does Powder-Based 3D Printing Work?. 2016. Quelle: https://imaterialise.helpjuice.com/design-printing/powder-based-3d-printing
- [5] 3.5 Rapid prototyping Selective laser sintering (SLS). 2015. Quelle: http://ibdesigntech.com/3-5-rapid-prototyping-selective-laser-sintering-sls-5/
- [6] Formlabs White Paper: 3D Printing with Desktop Sterelithography. 2015.

